Monatshefte für Chemie 109, 1049-1057 (1978)

Monatshefte für Chemie © by Springer-Verlag 1978

Ternäre Thallium-Übergangsmetall-Chalkogenide mit ThCr₂Si₂-Struktur

Kurt Klepp und Herbert Boller*

Institut für Anorganische Chemie, Universität Wien, A-1090 Wien, Österreich * Institut für Physikalische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 11. Oktober 1977. Angenommen 25. Oktober 1977)

Ternary Thallium Transition Metal Chalcogenides With the ThCr₂Si₂-Structure

The existence of ternary chalcogenides of general composition $\text{Tl}T_2X_2$ (T = Fe,Co,Ni, X = S; T = Fe,Co,Ni,Cu, X = Se) crystallizing in the $\text{Th}\text{Cr}_2\text{Si}_2$ -structure type has been established. The crystal structure of $\text{Tl}\text{Co}_2\text{S}_2$ was refined from single crystal diffractometer data. The dimensions of the tetragonal unit cells are: $\text{Tl}\text{Fe}_2\text{S}_2$; a = 3.755(1), c = 13.35(1) Å; $\text{Tl}\text{Co}_2\text{S}_2$: a = 3.7410(5), c = 12.956(5) Å; $\text{Tl}\text{Ni}_2\text{S}_2$: a = 3.792(1), c = 12.77(1) Å; $\text{Tl}\text{Fe}_2\text{Se}_2$: a = 3.890(1), c = 14.00(1) Å; $\text{Tl}\text{Co}_2\text{Se}_2$: a = 3.847(1), c = 13.54(1) Å; $\text{Tl}\text{Ni}_2\text{Se}_2$: a = 3.866(1), c = 13.41(1) Å; $\text{Tl}\text{Cu}_2\text{Se}_2$: a = 3.852(1), c = 14.01(1) Å. These phases are the first chalcogenides found to crystallize in the $\text{Th}\text{Cr}_2\text{Si}_2$ -structure type. Unlike the already known representatives of this structure type they show a pronounced partial ionic character. Interatomic distances as well as the relations to the alkali thiometallates of Co and Mn are discussed.

Experimentelles

a) Ausgangsmaterialien

Eisen: Pulver, 99,9%; Th. A. Edison Inc., Kobalt: Pulver, 99,9%; Leytes Metal and Chemical Corp., Nickel: Pulver, 99,99%; Koch Light, Kupfer: Pulver, elektrolytisch: Merck, Selen: Pulver, 99,999%; Koch Light, Schwefel: sublimiert: Alfa Ventron, Thallium: Stangen, 99,99%; Alfa Ventron.

Thallium wurde in Form der binären Chalkogenide eingesetzt, welche zuvor durch Zusammenschmelzen der Elemente in evakuierten Glasampullen hergestellt worden waren. Die Übergangsmetalle wurden durch Reduktion mit hochreinem Wasserstoff von Oxiden gereinigt.

b) Herstellung der Proben

Stöchiometrische Mengen von gepulvertem TIS bzw. TISe, Übergangsmetall und Chalkogen wurden gut vermischt und in unter einem Vak. von 10^{-4} torr

abgeschmolzenen Quarzglasampullen schrittweise auf 1050 °C erhitzt. Die Proben wurden einige Stdn. bei dieser Temp. belassen, danach im Verlauf einer Woche auf 800 °C abgekühlt und schließlich in Eiswasser abgeschreckt. Die Herstellung der ternären Kupfer-Chalkogenide erfolgte bei 700 °C. Sie wurden bei 400 °C getempert und dann abgeschreckt. Ein Teil der Proben wurde gepulvert und vier Wochen bei 400 °C getempert.

c) Röntgenographische Untersuchung

Von allen Proben wurden *Debye*—*Scherrer*-Aufnahmen angefertigt (CoK_a -Strahlung, Fe-Filter). Außerdem wurden die kristallographischen Daten aller Verbindungen durch Drehkristall- und *Weissenberg*aufnahmen sichergestellt.

Die Phasen Tl T_2X_2 (T = Fe, Co, Ni, Cu; X = S, Se)

Auf die oben beschriebene Weise wurden metallisch glänzende Ingots erhalten, die sich durch eine grobkristalline Struktur mit ausgeprägter Spaltbarkeit entlang einer Ebene auszeichneten, was eine Schichtstruktur nahelegte. Mit Ausnahme der Proben im System Tl—Cu—S ergab eine Auswertung der Pulverdiagramme das Vorliegen isotyper Phasen bei der Zusammensetzung Tl T_2X_2 . Lediglich im Falle des TlCo₂Se₂ gelang es nicht, röntgenographisch vollkommen einphasige Präparate herzustellen. Ein merklicher Homogenitätsbereich der Phasen konnte nicht nachgewiesen werden. Die bei 400 °C getemperten Proben zeigten gegenüber den bei 800 °C homogenisierten Präparaten (mit Ausnahme des TlNi₂S₂, das bei dieser Temperatur nicht mehr stabil ist) keinen Unterschied.

Drehkristall- und Weissenbergaufnahmen ergaben für alle Verbindungen innenzentrierte tetragonale Elementarzellen mit sehr ähnlichen Dimensionen. Auf Grund der Einkristalldaten wurden die Pulverdiagramme indiziert und die Gitterparameter nach der Methode der kleinsten Fehlerquadrate mit Hilfe eines Computerprogrammes verfeinert (Tab. 1).

Verbindung	a, Å	$c, \mathrm{\AA}$	c/a	V, Å ³	d_x	d_{pyk}
TlFe ₂ S ₂	3,755(1)	13.35(1)	3.555	188.3 (3)	6.71	6,53
TlCo ₂ S ₂	3,7410(5)	12,956(5)	3,463	181,3(1)	7,08	7,02
TlNi2S2	3,792(1)	12,77(1)	3,368	183,6(2)	6,98	
TlFe ₂ Se ₂	3,890(1)	14,00(1)	3,599	211,9(3)	$7,\!43$	
TlCo ₂ Se ₂	3,847(1)	13,54(1)	3,519	200,4(3)	7,96	
TlNi ₂ Se ₂	3,866(1)	13,41(1)	3,469	200,4(3)	7,95	
TlCu ₂ Se ₂	3,852(2)	14.01(1)	3,638	207,9(4)	7,82	

Tabelle 1. Gitterparameter und Dichten der TlT_2X_2 -Phasen

Die Elementarzelle enthält, nach der an TlCo₂S₂ mit Toluol als Sperrflüssigkeit bestimmten Dichte, zwei Formeleinheiten. Die *Laue*-Klasse 4/mmm und die systematischen Auslöschungen (h + k + l = 2n) führten zu den Raumgruppen I422, I4mm, I4mm, I4m2, I42m und I4/mmm. Stöchiometrie und Zellabmessungen legten Isotypie mit dem ThCr₂Si₂-Typ¹ nahe, der in der höchstsymmetrischen Raumgruppe I4/mmm kristallisiert.

Ternäre Thallium-Übergangsmetall-Chalkogenide

Die Verfeinerung der Kristallstruktur von TlCo₂S₂

Zur Sicherstellung der vorgeschlagenen Kristallstruktur und zu ihrer Verfeinerung wurden zwei Sätze jeweils symmetrieunabhängiger Intensitäten eines scheibenförmigen Kristalls $(0.15 \times 0.15 \times 0.015 \text{ mm})$ mit Hilfe eines automatischen Vierkreisdiffraktometers (Philips PW 1100, MoK α -Strahlung, Graphitmonochromator in ϑ -2 ϑ -scans bis zu einem maximalen ϑ -Wert von 30° \approx Cu-Bereich) vermessen. Die beiden Intensitätssätze wurden gemittelt. Von den auf diese Weise erhaltenen 106 Reflexen wurden 13 Reflexe, deren Intensität kleiner als 3 σ (I) war, von der Verfeinerung ausgeschlossen. Für die Berechnungen wurde das Programmsystem X-RAY. Version 1972² herangezogen. Die Atomformfaktoren wurden analytisch dargestellt als

$$f(\sin \vartheta/\lambda) = \sum_{i=1}^{4} a_i \exp(-b_i \sin^2 \vartheta/\lambda^2) + c,$$

wobei für alle Atome die Koeffizienten von Cromer und Mann³ benutzt wurden. Die Least-Squares-Verfeinerung auf der Basis des ThCr₂Si₂-Typs mit isotropen Temperaturfaktoren und einer der Zählstatistik entsprechenden Wichtung ergab bereits nach wenigen Zyklen einen R-Wert von 0,070. Eine weitere Verfeinerung mit anisotropen Temperaturfaktoren erschien wegen der ungünstigen Absorptionsverhältnisse im Einkristallscheibchen, für die keine geeignete Korrektur zur Verfügung stand, nicht sinnvoll und wurde daher nicht durchgeführt.

Die auf diese Weise erhaltenen Strukturdaten von $TlCo_2S_2$ sind zusammen mit den wichtigsten interatomaren Abständen in Tab. 2 wiedergegeben. Die beobachteten und berechneten Strukturamplituden sind in Tab. 3 zusammengestellt.

Atom	x	y	z	B, Å ²
2 Tl in (2 a)	0	0	0	1,77(09)
4 Co in (4 d)	0	0,5	0,25	0,86(11)
4 S in (4 e)	0	0	0,3474 (6)	0,80(14)
Tl—S(8)	3,302 (5) Co-	S(4) 2	2,257(5) S—S(4) 3,657 (9)
TlCo (8)	3,740 (1) Co-	-Co(4) 2	2,645(0) S-S (4	3,741(1)
Tl-Tl(4)	3,741 (1) Co-	$-\mathrm{Co}(4)$ 3	(741(1) S - S(1))	3,954(6)

Tabelle 2. TlCo₂S₂: Raumgruppe I4/mmm $-D_{4h}^{17}(Nr. 139)$. Strukturparameter und interatomare Abstände

Die Isotypie der anderen Thallium-Übergangsmetall-Chalkogenide wurde an Hand ihrer Pulverintensitäten überprüft. Mit Hilfe eines Computerprogrammes wurden für jede Verbindung mehrere Pulverdiagramme, mit jeweils variiertem z-Parameter für die 4 e-Position, berechnet und mit den visuell bestimmten Filmintensitäten verglichen. Dieser Vergleich ergab, daß die Selenide etwas höhere z-Werte besitzen (≈ 0.36).

Als Beispiel ist in Tab. 4 die Auswertung einer Pulveraufnahme von TIFe₂Se₂ angegeben. Dem berechneten Pulverdiagramm liegt ein z-Parameter von 0,357 zugrunde.

$(h \ k \ l)^*$	F_0	F _c	$(h \ k \ l)^*$	F_0	F _c
2 0 0	194.0	217.9	424	57.7	57.1
4 0 0	120.5	112.0	$3 \ 3 \ 4$	5,7	0.6
110	83.4	91.2	$1 \ 0 \ 5$	115.7	116.0
310	56.5	53.9	3 0 5	72.7	69.0
$5\hat{1}\hat{0}$	22.9	25.2	505	29.9	31.3
220	139.5	167.8	215	91.9	87.7
420	95.9	94 1	415	48 7	45.5
330	30,8	36.8	325	54 6	55 6
101	1167	112.7	435	28.3	31.3
201	71.0	62.0	400	178.5	177 7
501	20.6	96.3	206	64 1	59.0
001	29,0	20,3	200	21.9	39.5
	00, 4 44 5	00,0 40,0	400	186.2	108 1
4 1 1	44,0	40,0	110	100,2	190,1
321	49,7	50,1 96 9	310	120,7	120,0
431	23,2 27 C	20,3	220	45,5 00 g	47,7
0 0 2	25,6	32,9	420	22,6	20,8
202	32,0	27,6	336	79,6	87,7
$4 \ 0 \ 2L$	14,9	11,4	107	71,9	72,3
$1 \ 1 \ 2$	185,4	192,9	307	42,1	42,1
$3\ 1\ 2$	116,1	112,5	$2\ 1\ 7$	54,2	54,7
$5\ 1\ 2$	55,0	52,5	417	26,1	26,2
$2\ 2\ 2$	18,9	20,8	327	30,1	33,0
$4 \ 2 \ 2L$	13,6	8,1	0 0 8	162,2	171,3
$3\ 3\ 2$	68,3	74,4	$2 \ 0 \ 8$	125,0	133,5
103	165,1	177,4	$4 \ 0 \ 8$	68,7	74,3
303	110,5	102,5	1 1 8	37,8	37,8
5 0 3	48,7	49,5	$3\ 1\ 8$	23,7	23,8
$2\ 1\ 3$	128,1	129,3	$2\ 2\ 8$	95,4	107,7
4 1 3	71.5	69,7	$4\ 2\ 8$	60,1	63,0
$3\ 2\ 3$	82,8	83,8	$3 \ 3 \ 8 L$	13,8	14,9
4 3 3	45,8	49.5	$1 \ 0 \ 9$	104,5	106,7
0 0 4	185.0	189.9	3 0 9	68.4	70,5
2 0 4	139.9	139.8	219	82,4	85.8
4 0 4	74.7	69.2	4 1 9	47.2	49,4
1 1 4	17.7	13.0	3 2 9	53.4	58.8
314L	11.0	5.9	0 010 L	16.8	2,4
514L	11.0	2.7	2 010 L	9.7	8.3
224	100.1	107.5	$\frac{1}{4}$ 010 L	12.5	5.2
1 110	85.9	95.5	3 013	18.5	22.0
3 110	56.2	61,5	2 113	25.0	27.8
2 210	12.6	2.4 L	$\frac{1}{3}$ 213 L	17.0	17.5
3 310	43 4	42.5	0 014	47.4	32.6
1 011	96 1	82 1	2 014	29.9	26.7
3 011	55 7	55.5	1 114	105.8	94.2
2 111	62,2	67,0	3 114	74,3	67, 8

Tabelle 3. Beobachtete und berechnete Strukturfaktoren von $\rm TlCo_2S_2$

* Die Intensitäten der mit L bezeichneten Reflexe sind kleiner als $3\,\sigma$ (I).

$(h \ k \ l)^*$	F ₀	F _c	$(h \ k \ l)^*$	F ₀	F _c
111	38,4	39,0	2 214	25,4	21,7
3 211	46,1	46,4	$1 \ 015$	66,3	50,0
012	123,4	122,7	2 115	45,9	41,7
2 012	111,5	100,9	$0 \ 016$	66,1	54,2
112	38,5	32,6	2 016	48,2	45,3
3 112	24,2	21,5	1 116 L	17,8	4,0
2 212	89,8	84,4	1 017	63, 6	48,8
013	40.6	35.4	0.018L	9.6	8.6

Tabelle 3 (Fortsetzung)

* Die Intensitäten der mit L bezeichneten Reflexe sind kleiner als 3σ (I).

(h k l)	$10^4 \cdot \sin^2 \theta_0$	$10^4 \cdot \sin^2 \theta_c$	Ic	I ₀
0 0 2		164	2.2	
101	566	570	14.5	s
0 0 4	654	654	9.8	» 88
103	902	897	100.0	sst
1 1 0	1053	1059	18.6	s+
1 1 2	1219	1222	40.8	st
0 0 6	1483	1472	3.5	8
105	1552	1551	19.9	m
114		1713	1.5	
2 0 0	2114	2118	25.0	m+
2 0 2		2281	0.3	
1 1 6]	0700	2531)	27.8)	1
107	2932	2533	0.2	\mathbf{m}^+
0 0 8	2620	2616	6.5	s
$2\ 1\ 1$	2686	2688	2.6	888
204	2775	2772	3,8	SS
$2\ 1\ 3$	3015	3015	27.5	st
2 0 6	3591	3590	2,8	ss
215]	9679	3669)	8.8]	
1 1 8∫	3072	3675	2.7	S ⁺
109	3845	3841	4,1	s
0 010		4088	0,1	
$2 \ 2 \ 0$	4227	4236	7,2	s
$2\ 2\ 2$		4399	0,1	
$2\ 1\ 7$		4650	0,1	
2 0 8	4729	$47\dot{3}4$	9,0	\mathbf{s}^+
301	<u> </u>	4806	0,4	
$2\ 2\ 4$		4890	1.3	_

Tabelle 4. Pulveraufnahme von $TlFe_2Se_2$ (Debye-Scherrer-Kamera, CoKa-Strahlung)

Tabelle	4	(Fortsetzung)
---------	---	---------------

$(h \ k \ l)$	$10^4 \cdot \sin^2 \theta_0$	$10^4 \cdot \sin^2 \theta_c$	I _c	I ₀
ه ۲ ه ا		5199)	57)	
	5134	5147	12	8
310	5295	5295	2.8	88
$\hat{3}\hat{1}\hat{2}$		5458)	6,4)	1010
	5470	5476	5.2	m
2 2 6	5709	5707	1,5	ss
$3 \ 0 \ 5$	5785	5787	2,2	ss
0 012		5886	0,7	
$3\ 1\ 4$		5949	0,4	
$2\ 1\ 9$	5961	5959	4,4	s
2 010		6206	0,2	
3 1 6)	6760	6766]	12,7	m
3 0 7∫	0709	6768∫	0,0∫	113
228	6846	6852	6,3	s
$3\ 2\ 1$	_	6924	0,6	
$1 \ 112$		6945	0,1	
$3\ 2\ 3$	7253	7251	9,0	m
1 013		7438	0,3	
2 111	7604	7594	9,1	m
325]	7005	7905	4,2	o+
3 Î 8∫	1900	7911	2,8∫	5
2 012 \	0009	8004	2,9	20
0 0 14∫	0000	8012	0,6∫	96
309	8072	8076	2,2	SSS
2 210	_	8324	0,2	
4 0 0	8470	8472	4,9	ss
4 0 2		8635	0,1	_
$3\ 2\ 7$		8886	0,0	_
4 1 1	_	9042	0,7	
1 114	9072	9071	12,1	m
$4 \ 0 \ 4$		9126	1,2	
4 1 3	9370	9369	15,4	m
3 110	—	9383	2,7	
$3 \ 3 \ 0$	-	9531	2.3	
2 113		9556	1,0	
$3 \ 3 \ 2$	9693	9694	6,2	s
3 011	9711	9712	11,1	\mathbf{m}
1 015	_	9727	0,7	

Diskussion

Die oben beschriebenen Phasen sind die ersten Chalkogenide, die im ThCr₂Si₂-Typ kristallisieren. Zahlreiche Phasen dieses Strukturtyps wurden in Systemen mit Th, U, Erdalkalimetallen oder Seltenerdelementen einerseits, Übergangsmetallen und IVb-Elementen andererseits gefunden^{1,4–9}. Zwei Phosphide dieses Strukturtyps, LiCu₂P₂¹⁰ und CaNi_{1,95}P₂¹¹ konnten in jüngster Zeit ebenfalls nachgewiesen werden. Die Chalkogenide zeigen jedoch deutliche Unterschiede zu den bisher bekannten Phasen dieses Typs, was an Hand einer Besprechung der interatomaren Abstände im TlCo₂S₂ gezeigt werden soll.

Die Kobaltatome sind tetraedrisch von vier Schwefelatomen umgeben, der Co-S-Abstand von 2,26 Å entspricht der Summe der kovalenten Radien (2,27 Å). Durch Verknüpfung über Kanten werden von den [CoS₄]-Tetraedern Schichten ausgebildet, zwischen die Thalliumatome eingelagert sind, so daß sie von acht Schwefelatomen in den Ecken eines leicht tetragonal verzerrten Würfels koordiniert werden. Der große Tl-S-Abstand von 3,30 Å legt ionische Bindungsverhältnisse nahe (Summe der Ionenradien 3,25 Å). Dieser partiell ionische Charakter ist auch die Ursache für den großen Abstand zwischen den Schichten (S-S: 3.95Å) und für das hohe c/a-Verhältnis. Bei den bisher bekannten Verbindungen dieses Strukturtyps werden charakteristische c/a-Werte, zwischen 2,3 und 2,7 (gegenüber 3,46 beim TlCo₂S₂), gefunden. Ein besonders geringer Abstand zwischen den Schichten wird beim LiCu₂P₂¹⁰ beobachtet (P-P: 2,14Å). Bei dieser Verbindung werden P2-Paare gebildet. Paarbildung wird auch bei einigen Siliciden angenommen. In weiterer Folge beeinflußt der große Abstand zwischen den Schichten beim TICo₂S₂ auch die Koordination um das Thalliumatom. Bei den bisher bekannten Phasen dieses Typs beträgt die Koordination um das Zentralatom 16, da die Übergangsmetallatome hinreichend nahe sind. Der große Tl—Co-Abstand von 3,74 Å im TlCo₂S₂ läßt annehmen, daß das Thalliumatom primär lediglich von den acht Schwefelatomen koordiniert wird. Ein weiteres sehr auffälliges Merkmal sind die geringen Co-Co-Abstände innerhalb der Schichten (2,65Å), die auf eine starke metallische Bindung der Übergangsmetallatome schließen lassen.

Abschließend läßt sich also sagen, daß die beschriebenen Chalkogenide einen ausgesprochenen partiell ionischen Charakter besitzen; der überwiegend metallische Bindungscharakter, der in den bisher bekannten Vertretern dieses Strukturtyps beobachtet wurde, scheint hier auf Wechselwirkungen zwischen den Übergangsmetallatomen innerhalb der Schichten beschränkt zu sein.

Eng verwandt mit den hier besprochenen Chalkogeniden sind die von Bronger und Böttcher¹² gefundenen Verbindungen vom Typ $A_2T_3S_4$ (A = Rb, Cs; T = Mn, Co). Auch bei diesen treten analoge Schichten kantenverknüpfter Schwefel-Tetraeder auf. Die Übergangsmetallatome befinden sich in den Zentren der Tetraeder, doch sind nur drei Viertel der Plätze besetzt. Die Übergangsmetallatome ordnen sich auf eine komplizierte Weise, die zu Auslenkungen der Übergangsmetallatome von ihrer "idealen" Position und in der Folge auch zu Verrückungen der Alkali- und Chalkogenatome führt. Diese Verbindungen besitzen orthorhombische Symmetrie. Die nahe Verwandtschaft zu den $\text{Tl}T_2\text{S}_2$ -Phasen zeigt sich darüber hinaus bei einem Vergleich der Zelldimensionen, in den Beziehungen

$$\begin{array}{c} a_{A_2T_3S_4} \triangleq a_{\text{Tl}T_2S_2} \cdot \sqrt{2} \\ b_{A_2T_3S_4} \triangleq 2 \, a_{\text{Tl}T_2S_2} \cdot \sqrt{2} \\ c_{A_2T_3S_4} \triangleq c_{\text{Tl}T_2S_2} \end{array}$$

Mit dem ThCr₂Si₂-Typ eng verwandt ist auch der Strukturtyp des TlAgTe213. Man kann ihn aus jenem erhalten, indem man in jeder Übergangsmetallatomschicht die Hälfte der Atome in solcher Weise abzieht, daß die verbleibenden Atome wieder 44-Netze bilden, die jeweils auf Lücke angeordnet sind. Dieser Strukturtyp wurde von Kutoglu¹⁴ bei den Verbindungen TlFeS₂ und TlFeSe₂ gefunden. Ihre Gitterkonstanten (TlFeS₂: a = 3.753, c = 13,342 Å; TlFeSe₂: a = 3,881, c = 12.965 Å) sind mit den Zellabmessungen der von uns gefundenen Thallium-Eisen-Chalkogenide praktisch identisch. Es gelang uns allerdings nicht, die von Kutoglu¹⁴ beschriebenen Verbindungen herzustellen, obwohl es sich zweifellos um dieselben Phasen handelt. Hingegen erhielten wir bei dieser Zusammensetzung stets die von Wandji und Kom¹⁵ beschriebenen monoklinen Kristallarten, von denen das TlFeS₂ auch als Mineral (Raguinit) vorkommt¹⁶. Proben in den Schnitten TlFe_{2-x}S₂ und TlFe_{2-x}Se₂ (0 < x < 1) enthielten stets die beiden Randphasen und ließen keine nennenswerte Tendenz einer Unterbesetzung der Eisenpositionen in den ThCr₂Si₂-Phasen erkennen.

An dieser Stelle möchten wir Herrn Professor Dr. Kurt Komarek für die Förderung dieser Arbeit herzlich danken.

Herrn Dr. H. Völlenkle vom Institut für Mineralogie und Strukturchemie der Technischen Universität Wien danken wir für seine freundliche Hilfe bei den Messungen am PW 1100.

Die Rechnungen würden an den Anlagen Cyber 74 (EDV-Zentrum an der TU Wien) und Cyber 73 (EDV-Zentrum an der Universität Wien) durchgeführt.

Literatur

- ¹ Z. Ban und M. Sikirica, Acta Cryst. 18, 594 (1965).
- ² J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickinson und S. R. Hall, Computer Science Center, Univ. of Maryland.
- ³ D. T. Cromer und J. B. Mann, Acta Cryst. A24, 321 (1968).
- ⁴ Z. Ban und M. Sikirica, Z. anorg. allg. Chem. 356, 96 (1967).
- ⁵ W. Rieger und E. Parthé, Mh. Chem. 100, 444 (1969).

- ⁶ B. Eisenmann, N. May, W. Müller, H. Schäfer, A. Weiss, J. Winter und G. Ziegleder, Z. Naturforsch. 25 b, 1850 (1970).
- ⁷ N. May und H. Schäfer, Z. Naturforsch. 27 b, 864 (1972).
- ⁸ W. Dörrenscheidt, N. Niess und H. Schäfer, Z. Naturforsch. 31 b, 890 (1976).
- ⁹ R. Marazza, R. Ferro, G. Rambaldi und G. Zanicchi, J. Less Common Metals 53, 193 (1977).
- ¹⁰ H. Schlenger, H. Jacobs und R. Juza, Z. anorg. allg. Chem. 385, 177 (1971).
- ¹¹ A. Mewis, Z. Naturforsch. **32** b, 351 (1977).
- ¹² W. Bronger und P. Böttcher, Z. anorg. allg. Chem. 390, 1 (1972).
- ¹³ R. M. Imamov und Z. G. Pinsker, Kristallografija [russ.] 9, 743 (1964).
- ¹⁴ A. Kutoglu, Naturwissenschaften **61**, 125 (1974).
- ¹⁵ R. Wandji und J. K. Kom, C. R. hebdomad. Sé. Acad. Sci. 275 C, 813 (1972).
- ¹⁶ Y. Laurent, P. Picot und R. Pierrot, Bull. Soc. franc. Miner.-Crist. 92, 38 (1969).